Autonomous Reusing Policy Selection using Spreading Activation Model in Deep Reinforcement Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autonomous Quadrotor Landing using Deep Reinforcement Learning

Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...

متن کامل

Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning

Providing an efficient strategy to navigate safely through unsignaled intersections is a difficult task that requires determining the intent of other drivers. We explore the effectiveness of Deep Reinforcement Learning to handle intersection problems. Using recent advances in Deep RL, we are able to learn policies that surpass the performance of a commonly-used heuristic approach in several met...

متن کامل

Autonomous Helicopter Control using Reinforcement Learning Policy Search Methods

| Many control problems in the robotics eld can be cast as Partially Observed Markovian Decision Problems (POMDPs), an optimal control formalism. Finding optimal solutions to such problems in general, however is known to be intractable. It has often been observed that in practice, simple structured controllers su ce for good sub-optimal control, and recent research in the arti cial intelligence...

متن کامل

Using policy gradient reinforcement learning on autonomous robot controllers

Robot programmers can often quickly program a robot to approximately execute a task under specific environment conditions. However, achieving robust performance under more general conditions is significantly more difficult. We propose a framework that starts with an existing control system and uses reinforcement feedback from the environment to autonomously improve the controller’s performance....

متن کامل

Deep Reinforcement Learning framework for Autonomous Driving

Reinforcement learning is considered to be a strong AI paradigm which can be used to teach machines through interaction with the environment and learning from their mistakes. Despite its perceived utility, it has not yet been successfully applied in automotive applications. Motivated by the successful demonstrations of learning of Atari games and Go by Google DeepMind, we propose a framework fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Computer Science and Applications

سال: 2021

ISSN: 2156-5570,2158-107X

DOI: 10.14569/ijacsa.2021.0120402